
NSWI120 - Page 1/2 (variant 5 – 2014.02.07)
Write your answers to the special response sheet you received (with your name and photograph). If you are using more than single
sheet of paper for your answers, then mark each sheet with its number / total number of sheets you will hand over.

Task 1
Assume we have the following function implemented in
Pascal programming language:

function ToFixedPoint(

value : longint; exp : longint
) : longint;

The function arguments together represent a real number
x, where x is defined as: x = value * 10exp. The
function returns value of x as a fixed-point real number in a
10+22 format. In hexadecimal format write down a return
value of ToFixedPoint when called with the following
arguments (representing a real number 11.53125):

… := ToFixedPoint(1153125, -5);
Assume the type longint is a Pascal standard 32-bit
signed integer number.

Task 2
Assume you are implementing a procedure
Sleep(s : Longint) as part of a multithreaded
operating system (supporting parallel execution of many
threads from different applications). The goal of the
procedure is to postpone execution of further calling thread
instructions by at least s seconds. There are several feasible
variants of how to implement such procedure – choose the
one best suited for the OS described above. Write down a
pseudo code for the Sleep procedure as well as all other
parts of the OS responsible for the overall behavior of the
“sleeping” operation (focus only on code directly
responsible for any operation necessary during the whole
sleeping sequence of the calling thread). Assume your code
will always run on a platform providing you with all
necessary devices and controllers.

Task 3
Implement the following function TextLength in Pascal:

type
 PUtf16 = ^word;
function TextLength(text : PUtf16) : word;

where: the argument text is a pointer to a null-terminated
string in UTF-16 encoding. The function TextLength
should return a number of graphemes (i.e. “complete
characters” including all of their diacritics) the string text
is composed of (e.g. for any input string representing text
Říp in Czech the function has to return value 3). Assume
the size of type word is 2 bytes. You can use reasonable
basic utility functions, that an RTL might provide, however
for each such case describe the function/procedure
required (its prototype and behavior). Important note:
Providing support for UCS-2 is not enough – you have to
provide support for full UTF-16 encoding!

Task 4
Assume you have a clearly formatted file system using a FAT
to manage files, where: every FAT entry is 12 bits long,
value 0 represents a free sector, end of file is represented
by maximal entry value. The file system is located on a hard
drive with 512 B sectors; size of 1 cluster is exactly 1 sector.
First sector/cluster available for file data (called 1st data
sector) has assigned number 1, and is represented by the
first entry in the FAT. The file system supports only a single
directory (root directory), for which exactly 4 sectors before
the 1st data sector are reserved. Every directory entry is
exactly 32 B long. Every directory entry contains the
following: 11 B for a file name, 2 B for a number of first
sector, 4 B for length (in bytes).

Draw and describe contents of the first 16 FAT entries just
after execution of all the following commands (if a new data
sector needs to be allocated, assume to choose always the
first unallocated sector with the lowest number; an
operation of “write N bytes to X” should be interpreted as
writing [appending] N bytes after the last byte of file X):

1) Create new empty file A.TXT
2) Create new empty file B.TXT
3) Write 500 bytes to B.TXT
4) Write 4 KiB to A.TXT
5) Write 1 KiB to B.TXT
6) Delete file A.TXT
7) Create new empty file C.TXT
8) Write 1 byte to B.TXT
9) Write 512 bytes to B.TXT

Task 5

The following program written in Pascal, when compiled
using the Free Pascal compiler, is executable on both Linux
OS running on x86 platform and Windows XP OS running on
86 platform. Describe and explain how and why it is
possible. Also describe all the steps necessary to get from
the original source code to having a suitable executable file.
Don’t forget to explain if a single executable file is sufficient
in the scenario described above, or if multiple executable
files are required.

program Power;
var
 m, n : integer;

begin
 ReadLn(n);
 m := 1;
 while n >= 1 do begin
 m := m * 2;
 Dec(n);
 end;
 WriteLn('2 to power of N equals ', m);
end.

NSWI120 - Page 2/2

Task 6
Assume you are implementing an OS function whose
responsibility is to send N bytes of data across a local
computer network. The function has two arguments it
receives from an application: a pointer to first byte of data
to be transferred, and value N. The network interface card
(NIC) is programmed via port-mapped I/O, and the NIC is
using DMA with scatter/gather I/O support to transfer data
to/from main RAM memory. Thus every time a data
transfer should be initiated the OS has to provide the NIC
with an address of data to be transferred. However, to
maximize system throughput we would like to support only
scenario where the NIC receives an address of the original
buffer in the originating application (i.e. we never want to
copy any data to a different memory location). With an
assumption the OS is using paging manage processes
memory explain the following:
a) Describe and explain all actions the OS has to take in

order to pass a correct address to the NIC. Provide an
example.

b) Can you apply such mechanism to all combinations of
source address and N, or are there any addresses
and/or Ns not valid for applications to pass to the OS
here? Explain and describe all variants.

Task 7

Assume you are designing a sound card for the 16-bit ISA
bus (16-bit data bus, dedicated 24-bit address bus, special
16-bit I/O address space, supports bus mastering). The
sound card should support playback of uncompressed audio
in CD format only (2 channels [stereo], 16-bit samples, 44.1
kHz sampling rate). Propose and define a suitable HCI for
such a sound card (you can define any necessary port
addresses as well as any other constants to any reasonable
value). Your HCI has to have all the following properties:
1) Supports scatter/gather IO.
2) Single “Play” command can be used to start audio

playback (command has two arguments: a buffer
containing the audio data, and size of the buffer in
bytes [you can define a reasonable maximum allowed
buffer size]).

3) The sound card has to suitably indicate a state when it
is transferring data from main memory. The sound card
does not accept (= ignores) all “Play” commands in
such a state.

Task 8

An OS supporting multithreading has to suddenly terminate
a thread (e.g. as a result of null pointer dereference in that
thread) that holds several locked locks. The lock
implementation is provided by the OS itself. Explain what
the OS should do in such a situation, describe all typical
solutions of the problem, and for each of them explain its
pros and cons.

Task 9
Describe and explain what a “sandbox” is, and where and
for what reason it is used.

Task 10
Assume to have PC with a 32-bit PCI bus. There is a GPIO
(General Purpose Input/Output) controller connected to the
PCI bus. The controller provides access to 32 independent
digital output signals/lines (called GPIO). The controller is
configured to have a single 32-bit port mapped onto the I/O
address space address 0x4567. Every bit of the port
represents state of a single GPIO output signal. The port can
be read to receive current state of all the GPIO signals the
controller is “transmitting”. By writing to the same port we
change the state of all the signals controller is
“transmitting”. Your goal is to implement (in Pascal variant
with a typical suitable extension, e.g. Free Pascal) a
procedure with the following prototype:

procedure Output(b : Longword);

where Longword is a 32-bit unsigned integer type, and
valid value of b argument is any number in range from 0 to
255.
The goal of the procedure is change in a single moment in
time (at once) all the GPIO signals in the following way (all
IDs are counted from 0): 2nd and 3rd GPIO to 0, 20th to 23rd
GPIO to values of bits 0 to 3 of the b argument, 28th to 31st
GPIO to negation of values of bits 4 to 7 of the b argument.
All other GPIO lines must remain unchanged!
You can assume your code will always run on a computer
with Intel Pentium III microprocessor (32-bit CPU, 64-bit
data bus, 36-bit address bus, special 16-bit I/O address
space). Assume the processor, the PCI bus, and the GPIO
controller all have the same bit and byte ordering. The CPU
contains (among others) 4 general 32-bit registers EAX,
EBX, ECX, EDX. Its instruction set includes the following
instructions:

 MOV op1, op2
Where only one of op1 and op2 is allowed to be an
address, op1 = target (register or address), op2 =
source (register, address [marked by square brackets]
or immediate value).

 IN EAX, EDX
Reading 32-bit value into EAX from an address
(in EDX) of the I/O address space.

 OUT EDX, EAX
Writing value of EAX into 32 bits in I/O address space
given by an address in EDX.

The instruction set also includes instructions for all common
unary and binary arithmetic and bit operations – all such
instructions follow this format: unInstr op1 or
binIntr op1, op2, where: op1 = target (register only),
op2 = 2nd source (register, immediate, or address).
Important note: instructions IN and OUT of the Intel
Pentium III processor have also additional variants with 8-
bit, or 16-bit operand. However, we cannot use them in our
implementation, even though they look equivalent – e.g. for
consecutive 8-bit writes to addresses 0x4567, 0x4568,
0x4569, 0x456A are not equivalent to a single 32-bit write
to address 0x4567, as they will not change state of all the
GPIO lines at once.

